♎
Limited AI
  • Machine Learning
    • Linear Model Cheating Sheet
    • Nonlinear Model Cheating Sheet
    • General Linear Model 1
    • General Linear Model 2
    • General Linear Model 3
    • Tree Based Methods
    • Tree Based Methods Supplement
    • XG,Cat,Light__Boosting
    • KNN&PCA
    • Model Performance
    • Model Evaluation
    • Code Practice
      • KNN
      • Decision Tree Python Code
    • Data and Feature Engineering
      • Handle Bias Data
      • Cold Start Problem
  • Deep Learning
    • Summary v2
    • Basic Neural Network
      • From Linear to Deep
      • Perceptron and Activation Function
      • NN network Details
      • Backpropagation Details
      • Gradient Vanishing vs Gradient Exploding
    • Basic CNN
      • Why CNN
      • Filter/ Convolution Kernel and Its Operation
      • Padding& Stride
      • Layers
      • Extra:From Fully Connected Layers to Convolutions
      • Extra: Multiple Input and Multiple Output Channels
    • Advance CNN
      • Convolutional Neural Networks(LeNet)
      • Deep Convolution Neural Networks(AlexNet)
      • Networks Using Blocks (VGG)
      • Network in Network(NiN)
      • Multi-Branch Networks(GoogLeNet&I mageNet)
      • Residual Networks(ResNet) and ResNeXt
      • Densely Connected Networks(DenseNet)
      • Batch Normalization
    • Basic RNN
      • Seq Model
      • Raw Text to Seq
      • Language Models
      • Recurrent Neural Networks(RNN)
      • Backpropagation Through Time
    • Advance RNN
      • Gated Recurrent Units(GRU)
      • Long Short-Term Memory(LSTM)
      • Bidirectional Recurrent Neural Networks(BRNN)
      • Encoder-Decoder Architecture
      • Seuqence to Sequence Learning(Seq2Seq)
    • Attention Mechanisms and Transformers
      • Queries, Keys, and Values
      • Attention is all you need
        • Attention and Kernel
        • Attention Scoring Functions
        • The Bahdanau Attention Mechanism
        • Multi-Head Attention
        • Self-Attention
        • Attention的实现
      • The Transformer Architecture
        • Extra Reading
        • 最短的最大路径长度
      • Large-Scaling Pretraning with Transformers
        • BERT vs OpenAI GPT vs ELMo
        • Decoder Model框架
        • Bert vs XLNet
        • T5& GPT& Bert比较
        • 编码器-解码器架构 vs GPT 模型
        • Encoder vs Decoder Reference
      • Transformers for Vision
      • Transformer for Multiomodal
    • NLP Pretraining
      • Word Embedding(word2vec)
        • Extra Reading
      • Approximate Training
      • Word Embedding with Global Vectors(GloVe)
        • Extra Reading
        • Supplement
      • Encoder(BERT)
        • BERT
        • Extra Reading
      • Decoder(GPT&XLNet&Lamma)
        • GPT
        • XLNet
          • XLNet架构
          • XLNet特点与其他比较
      • Encoder-Decoder(BART& T5)
        • BART
        • T5
  • GenAI
    • Introduction
      • GenAI Paper Must Read
      • GenAI六个阶段
    • Language Models Pre-training
      • Encoder-Decoder Architecture
      • Encoder Deep Dive
      • Decoder Deep Dive
      • Encoder VS Decoder
      • Attention Mechanism
      • Transformers
    • Example: Llama 3 8B架构
    • Fine-Tuning Generation Models
    • RAG and Adavance RAG
    • AI Agent
  • Statistics and Optimization
    • A/B testing
    • Sampling/ABtesting/GradientMethod
    • Gradient Decent Deep Dive
  • Machine Learning System Design
    • Extra Reading
    • Introduction
  • Responsible AI
    • AI Risk and Uncertainty
      • What is AI risk
      • General Intro for Uncertainty Quantification
      • Calibration
      • Conformal Prediction
        • Review the linear regression
        • Exchangeability
        • Split Conformal Prediction
        • Conformalized Quantile Regression
        • Beyond marginal coverage
        • Split Conformal Classification
        • Full Conformal Coverage
        • Cross-Validation +
        • Conformal Histgram Regression
    • xAI
      • SHAP value
  • Extra Research
    • Paper Reading
    • Reference
Powered by GitBook
On this page
  1. GenAI
  2. Introduction

GenAI六个阶段

阶段1 - 消费型生成AI(Consume Generative AI Embedded in Apps):

  • 通过使用现成的模型满足广泛的用例。在这一阶段,企业通过购买服务来消费嵌入应用中的生成AI,这是提供商管理的。

阶段2 - 嵌入生成型AI(Embed Generative AI in Custom App Frameworks):

  • 根据用户定义的应用程序使用模型。此阶段的企业在其定制应用框架中嵌入生成AI。

阶段3 - 通过提示工程扩展生成AI(Extend Generative AI via Prompt Engineering):

  • 使用提示工程训练模型以产生所需的输出。在这一阶段,企业开始通过提示工程来扩展AI的功能,这通常仍是提供商管理的。

阶段4 - 通过数据检索和微调扩展生成AI(Extend Generative AI via Retrieval and Fine-Tuning):

  • 在用户端使用提示工程,同时深入了解数据检索和微调,这些仍然主要由LLM提供者管理。企业进一步扩展AI应用,通过数据检索和微调来增强模型的功能,仍然是提供商管理。

阶段5 - 自管理扩展(Self-Managed Extension):

  • 将大部分事务掌握在用户自己手中,从提示工程到数据检索和微调(如RAG模型,PEFT模型等)。这是自管理阶段的开始,企业承担更多管理责任。

阶段6 - 构建自定义模型(Build Custom Models from Scratch):

  • 从零开始创建整个基础模型——从预训练到后训练。这是企业完全自主构建和部署AI模型的阶段,标志着自管理的高级阶段。

PreviousGenAI Paper Must ReadNextLanguage Models Pre-training

Last updated 8 months ago