Split Conformal Classification

The classification problem

Uncertainty estimation via calibrated prediction sets

Prediction sets for classification: the ideal approach

The classification oracle& The conservative classification oracle

Machine learning classification models

Plug-in prediction sets will often fail

Calibration via conformity scores

Split-conformal classification

y[C]={1,2,,C}y \in [C] = \{1, 2, \cdots, C\}

πc(x)=P[Y=cX=x]\pi_c(x) = P[Y= c | X= x]

所以这里用到generalized conditional quantile function?

如果太多了,你就对最后一个label进行random,让probability到1-\alpha

但是会导致常常under coverage?尤其是在deep learning的时候

What is γ\gamma?

  • γ\gamma just the threshold you choose

What do we do in the calibration set?

  • we cal the curve, and find the probability(就是左边这个玩意),然后确保你的true label可以在里面,那么这就是你这个calibration得出来的numerical score

  • 你有很多这样的probability,然后组成empirical distribution

  • choose 你想要要的alpha,然后poll out这个emeprical probabiltty(有时候是1-alpha?)

Last updated