♎
Limited AI
Ctrlk
  • Machine Learning
  • Deep Learning
    • Summary v2
    • Basic Neural Network
    • Basic CNN
    • Advance CNN
    • Basic RNN
    • Advance RNN
    • Attention Mechanisms and Transformers
      • Queries, Keys, and Values
      • Attention is all you need
      • The Transformer Architecture
      • Large-Scaling Pretraning with Transformers
        • BERT vs OpenAI GPT vs ELMo
        • Decoder Model框架
        • Bert vs XLNet
        • T5& GPT& Bert比较
        • 编码器-解码器架构 vs GPT 模型
        • Encoder vs Decoder Reference
      • Transformers for Vision
      • Transformer for Multiomodal
    • NLP Pretraining
  • GenAI
  • Statistics and Optimization
  • Machine Learning System Design
  • Responsible AI
  • Extra Research
Powered by GitBook
On this page
  1. Deep Learning
  2. Attention Mechanisms and Transformers
  3. Large-Scaling Pretraning with Transformers

Encoder vs Decoder Reference

Reference

Logo“开源靠LLama,闭源看GPT“,Transformer变体第一阶段,Decoder-Only获胜? - 53AI-AI知识库|大模型知识库|大模型训练|智能体开发www.53ai.com
Logohttps://mp.weixin.qq.com/s?__biz=MzkzMTEzMzI5Ng==&mid=2247485463&idx=1&sn=3a2b22d3c06c8b316046ad4a2d22ba44&chksm=c26eea08f519631e99b545ce9b75cc9c5040d202fc6a5caa90122eb03b7e0b585c383c1b9971&scene=21#wechat_redirectmp.weixin.qq.com

Previous编码器-解码器架构 vs GPT 模型NextTransformers for Vision

Last updated 1 year ago