Extra Reading
Reading
Transformer Architecture | Transformer 架构
1. What is the Transformer Architecture? | 什么是 Transformer 架构?
The Transformer architecture is a deep learning model introduced by Vaswani et al. in the paper "Attention is All You Need" (2017). It has become the foundation for many state-of-the-art models, such as BERT, GPT, and T5. The key innovation of the Transformer is its ability to model dependencies between input and output elements without relying on sequential processing, which was a limitation in traditional RNN-based models like LSTMs.
The Transformer uses self-attention mechanisms to capture relationships between elements in the input sequence, allowing for parallel processing and better handling of long-range dependencies. This architecture is primarily used in natural language processing (NLP) tasks like machine translation, text generation, and text summarization, but it has also been applied to areas like image processing and speech recognition. Transformer 架构 是由 Vaswani 等人在 2017 年的论文《Attention is All You Need》中提出的一种深度学习模型。它成为许多先进模型的基础,例如 BERT、GPT 和 T5。Transformer 的关键创新在于能够建模输入和输出元素之间的依赖关系,而不依赖于序列处理,这克服了传统基于 RNN 的模型(如 LSTM)的局限性。
Transformer 使用 自注意力机制 来捕捉输入序列中元素之间的关系,允许并行处理,并且更好地处理了长程依赖问题。该架构主要用于 自然语言处理 (NLP) 任务,如机器翻译、文本生成和文本摘要,但它也被应用于图像处理和语音识别等领域。
2. Key Components of the Transformer | Transformer 的关键组件
The Transformer architecture consists of two main parts:
Encoder: Processes the input sequence and generates a set of continuous representations.
Decoder: Takes the encoder's output and generates the output sequence.
Both the encoder and decoder are made up of multiple layers, each containing two key sub-layers:
Self-Attention Mechanism: Allows each position in the sequence to attend to all other positions, capturing dependencies across the sequence.
Feed-Forward Neural Network (FFNN): Applies a non-linear transformation to the attention outputs, enhancing the representation before passing it to the next layer.
Each layer also includes residual connections and layer normalization, which help stabilize training and improve gradient flow. Transformer 架构由两个主要部分组成:
编码器:处理输入序列并生成一组连续的表示。
解码器:接收编码器的输出并生成输出序列。
编码器和解码器都由多层组成,每层包含两个关键子层:
自注意力机制:允许序列中的每个位置关注所有其他位置,从而捕捉序列中的依赖关系。
前馈神经网络 (FFNN):对注意力输出应用非线性变换,增强表示后传递给下一层。
每层还包括 残差连接 和 层归一化,它们有助于稳定训练并改善梯度流动。
Encoder Structure | 编码器结构
The encoder consists of multiple identical layers, each with two sub-layers:
Self-Attention Layer: Allows each word to attend to every other word in the sequence, capturing the dependencies between them.
Feed-Forward Network: A fully connected layer that applies non-linear transformations to the output of the attention layer.
Each layer has a residual connection around the two sub-layers, and layer normalization is applied after each sub-layer. 编码器由多个相同的层组成,每层有两个子层:
自注意力层:允许序列中的每个单词关注序列中的其他单词,从而捕捉它们之间的依赖关系。
前馈网络:一个全连接层,对注意力层的输出应用非线性变换。
每层在两个子层之间有一个残差连接,并在每个子层之后应用 层归一化。
Decoder Structure | 解码器结构
The decoder also consists of multiple identical layers, but each layer has three sub-layers:
Masked Self-Attention Layer: Prevents the decoder from attending to future positions in the sequence during training (to avoid "cheating" by seeing the future).
Encoder-Decoder Attention Layer: Allows the decoder to attend to relevant parts of the encoder's output.
Feed-Forward Network: A fully connected layer applied to the output of the attention mechanism.
As in the encoder, each sub-layer is followed by residual connections and layer normalization. 解码器同样由多个相同的层组成,但每层有三个子层:
掩蔽自注意力层:防止解码器在训练期间关注序列中的未来位置(以避免看到未来的信息“作弊”)。
编码器-解码器注意力层:允许解码器关注编码器输出中的相关部分。
前馈网络:一个全连接层,应用于注意力机制的输出。
与编码器一样,每个子层后面都有残差连接和层归一化。
3. Self-Attention in Transformers | Transformer 中的自注意力机制
Self-attention is a critical mechanism in the Transformer that allows each word or token in a sequence to attend to other words or tokens, capturing dependencies between them. Unlike traditional RNNs or LSTMs, where information flows sequentially, self-attention allows the model to process all words simultaneously, enabling parallelization.
The process of self-attention involves three steps:
This allows the model to weigh the importance of different words in the sequence, helping it capture dependencies across the entire sequence. 自注意力机制是 Transformer 中的关键机制,它允许序列中的每个单词或标记关注其他单词或标记,捕捉它们之间的依赖关系。与传统的 RNN 或 LSTM 不同,自注意力机制允许模型同时处理所有单词,从而实现并行化。
自注意力机制 的过程包括三个步骤:
这使得模型能够衡量序列中不同单词的重要性,从而帮助捕捉整个序列中的依赖关系。
4. Multi-Head Attention | 多头注意力机制
The Multi-Head Attention mechanism extends self-attention by applying multiple attention mechanisms in parallel. Each "head" learns different aspects of the relationships in the input data, allowing the model to capture more complex patterns.
This helps the model focus on different parts of the input in parallel, improving its ability to understand complex dependencies. 多头注意力机制 通过并行应用多个注意力机制扩展了自注意力。每个“头”学习输入数据关系的不同方面,从而使模型能够捕捉更复杂的模式。
这有助于模型并行关注输入的不同部分,从而提高理解复杂依赖关系的能力。
5. Positional Encoding | 位置编码
Since the Transformer does not rely on sequential processing, it lacks a natural way to encode the positions of words in the input sequence. To address this, positional encoding is added to the input embeddings to provide the model with information about the position of each word in the sequence.
This allows the model to learn the order of the words and capture sequential information. 由于 Transformer 不依赖序列处理,因此它缺乏一种自然的方式来编码输入序列中单词的位置。为了解决这一问题,位置编码 被添加到输入嵌入中,提供关于每个单词在序列中位置的信息。
这使得模型能够学习单词的顺序并捕捉序列信息。
6. Applications of the Transformer Architecture | Transformer 架构的应用
Machine Translation | 机器翻译: Transformers are widely used in machine translation tasks, such as translating text between languages. The self-attention mechanism helps capture the dependencies between words across long distances. 机器翻译:Transformer 广泛应用于机器翻译任务,如文本语言间的翻译。自注意力机制有助于捕捉长距离单词之间的依赖关系。
Text Generation | 文本生成: Models like GPT (Generative Pretrained Transformer) are based on the Transformer architecture and are used for generating coherent text in tasks like dialogue generation, story completion, and code generation. 文本生成:像 GPT(生成式预训练 Transformer)这样的模型基于 Transformer 架构,广泛用于生成连贯文本的任务,如对话生成、故事补全和代码生成。
Text Summarization | 文本摘要: Transformers are used to generate summaries of long documents, allowing the model to focus on the most important sections of the text. 文本摘要:Transformer 被用于生成长文档的摘要,使模型能够关注文本中最重要的部分。
Question Answering | 问答系统: In question-answering systems, the Transformer architecture helps the model understand the context of the question and extract the relevant answer from the text. 问答系统:在问答系统中,Transformer 架构帮助模型理解问题的上下文并从文本中提取相关答案。
Summary | 总结
Transformer is a powerful architecture that uses self-attention mechanisms to capture relationships between elements in the input sequence, enabling parallel processing.
Key Components: Encoder, decoder, self-attention, multi-head attention, and positional encoding.
Advantages: Handles long-range dependencies, allows parallelization, and provides better context understanding.
Applications: Machine translation, text generation, summarization, and question answering.
Transformer 是一种强大的架构,使用自注意力机制捕捉输入序列中元素之间的关系,从而实现并行处理。其关键组件包括编码器、解码器、自注意力、多头注意力和位置编码。Transformer 的优势在于能够处理长程依赖、支持并行化处理,并提供更好的上下文理解。应用领域包括机器翻译、文本生成、摘要和问答系统等。
Last updated